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Abstract

We study semiparametric two-step estimators which have the same structure as para-

metric doubly robust estimators in their second step, but retain a fully nonparametric model

in the first stage. We show that these semiparametric doubly robust estimators (SDREs)

are asymptotically linear under conditions that are much weaker than those necessary for

generic semiparametric two-step estimators, and thus distributional approximations based

on classical first-order asymptotic theory are substantially more reliable. In practice, this

means that SDREs generally have smaller first-order bias, are less sensitive to the imple-

mentation of the nonparametric first stage, can allow for rate-optimal choices of smoothing

parameters and data-driven estimates thereof, and do not require the use of bias reducing

nonparametric estimators (such as those based on higher-order kernels) in settings with

moderate dimensionality. SDREs exist for many interesting parameters in a wide range

of missing data and treatment effect models. Given their theoretical and practical advan-

tages, SDREs constitute an attractive alternative to other estimators commonly employed

in those areas, such as e.g. Inverse Probability Weighting. We illustrate our method with a

simulation exercise.
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1. Introduction

Semiparametric models are of great importance for applied econometric research. These models

often imply that the finite-dimensional parameter of interest can be characterized through a

moment condition that contains an unknown nuisance function. This structure then leads to

a two-step semiparametric estimation approach. In the first step, the nuisance function is

estimated nonparametrically. In the second step, the parameter of interest is estimated from

an empirical version of the moment condition, with the unknown nuisance function replaced

by its first-step estimate. Such estimators are used in a wide range of applications, and their

theoretical properties have been studied extensively (e.g. Newey, 1994; Newey and McFadden,

1994; Andrews, 1994; Chen, Linton, and Van Keilegom, 2003; Ichimura and Lee, 2010).

In this paper, we consider semiparametric two-step estimators that are based on a moment

condition that exhibits a particular structure: it depends on two unknown nuisance functions,

but still identifies the parameter of interest if either one of the two functions is replaced by some

arbitrary value. Following Robins, Rotnitzky, and van der Laan (2000) and Robins and Rot-

nitzky (2001), we refer to such moment conditions as doubly robust, and call the corresponding

estimators semiparametric doubly robust estimators (SDREs). These estimators differ from the

usual doubly robust procedures used widely in statistics (e.g. Van der Laan and Robins, 2003),

which rely on additional parametric restrictions on the nuisance functions. We impose no such

restrictions in our paper.

Our main contribution is to show that a SDRE possesses several attractive theoretical and

practical properties relative to a generic semiparametric two-step estimator, even if the two

have the same asymptotic variance. SDREs are generally root-n-consistent and asymptotically

normal under weaker conditions on the smoothness of the nuisance functions, or, equivalently,

on the accuracy of the first step nonparametric estimates. Their stochastic behavior can thus be

better approximated by classical first-order asymptotics. In practice, this means that SDREs

generally have smaller first-order bias, are less sensitive to the implementation of the nonpara-

metric first stage, can allow for rate-optimal choices of smoothing parameters and data-driven

estimates thereof, and do not require the use of bias reducing nonparametric estimators (such

as those based on higher-order kernels) in settings with moderate dimensionality. SDREs are

also adaptive, in the sense that by construction their asymptotic variance does not contain
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adjustment terms for the nonparametric first step. This substantially simplifies the calculation

of standard errors.

Doubly robust moment conditions are known to exist for many interesting parameters in

a wide range of semiparametric models. Examples include regression coefficients in models

with missing outcomes and/or covariates (e.g. Robins, Rotnitzky, and Zhao, 1994; Robins and

Rotnitzky, 1995), average treatment effects in potential outcome models with unconfounded

assignment (Scharfstein, Rotnitzky, and Robins, 1999), and local average treatment effects in

instrumental variable models (Tan, 2006), amongst many others. It is thus straightforward

to construct our SDREs in these settings. In all the aforementioned examples, and several

others, doubly robust moment conditions take the form of an expectation of the respective

efficient influence (or “score”) function. The asymptotic variance of the SDRE is thus equal

to the semiparametric efficiency bound in these settings (Newey, 1994). SDREs therefore have

favorable properties even relative to other efficient estimators that are commonly used in such

settings, such as e.g. Inverse Probability Weighting estimators in missing data and treatment

effect models (e.g. Hirano, Imbens, and Ridder, 2003; Chen, Hong, and Tarozzi, 2008).

As mentioned above, doubly robust moment conditions are traditionally used in connection

with fully parametric specifications for each of the two nuisance functions, as this ensures that

the resulting estimator is consistent if at least one of the parametric specifications is correct.

The use of parametric doubly robust estimators is typically motivated by valid concerns about

the reliability of semiparametric two-step estimators, especially the accuracy of conventional

approximations of their finite sample distribution based on first-order asymptotics (e.g. Robins

and Ritov, 1997). Such approximations are typically derived under strong smoothness conditions

on the nuisance function, which cannot be effectively exploited by nonparametric estimation

procedures in moderate samples, even if the conditions are actually satisfied.

Our use of doubly robust moment conditions is different from the traditional one, since

we always retain a fully nonparametric first stage. However, our method addresses the same

concerns about the accuracy of distributional approximation based on conventional asymptotic

theory. Our results show that the same structure that safeguards parametric doubly robust

estimators against misspecification is also benefitial when using a nonparametric first stage.

It considerably reduces the impact of both the smoothing bias and the stochastic variation
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from nonparametrically estimating the nuisance functions on the final SDRE. Our estimators

can therefore be shown to be root-n-consistent and asymptotically normal under substantially

weaker smoothness conditions than those used to derive similar results for generic semipara-

metric two-step procedures. As a consequence, we expect inferential procedures justified by

this asymptotic theory, such as hypothesis tests or confidence intervals, to be more reliable in

settings with moderate samples and not too high-dimensional nuisance functions.

Our paper is not the first to be concerned with improving the properties of semiparametric

two-stage estimators. In other contexts, Newey, Hsieh, and Robins (2004) and Klein and Shen

(2010) propose methods that do not exploit higher-order differentiability conditions to reduce

the impact of the first-stage smoothing bias on the properties of certain two-step estimators.

Cattaneo, Crump, and Jansson (2012a) study a jackknife approach to remove bias terms related

to the variance of the first-stage nonparametric problem in the specific context of weighted

average derivative estimation. Our paper complements these findings in a general sense, showing

that the use of doubly robust moment conditions reduces both types of bias simultaneously. An

alternative approach to improve inference, which we do not consider in this paper, would be to

derive “non-root-n” asymptotic approximations. Examples of such a strategy include Robins,

Li, Tchetgen, and Van Der Vaart (2008), who consider semiparametric inference in models

with very high-dimensional functional nuisance parameters, and Cattaneo, Crump, and Jansson

(2012b), who study so-called small bandwidth asymptotics for semiparametric estimators of

density-weighted average derivatives.

The remainder of this paper is structured as follows. In the next section, we present the

modeling framework and our estimation procedure, and give some concrete examples of doubly

robust moment conditions. In Section 3, the estimators’ asymptotics properties are derived in a

general setting. Section 4 applies our findings to the important special case of estimating average

treatment effects under unconfoundedness. Section 5 shows evidence that SDREs have superior

properties compared to other methods in a simulation study. Finally, Section 6 concludes. All

proofs are collected in the Appendix.
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2. Modeling Framework and Estimation Procedure

2.1. Doubly Robust Moment Conditions. We consider the problem of estimating a

vector-valued parameter θo, contained in the interior of some compact parameter space Θ ⊂ Rdθ ,

in a semiparametric model. The data consists of an i.i.d. sample {Zi}ni=1 from the distribution of

the random vector Z ∈ Rdz . We assume that one way to identify θo within the semiparametric

model is through a moment condition that exhibits a particular structure: there exists a known

moment function ψ(·) taking values in Rdθ such that

Ψ(θ, po, qo) := E(ψ(Z, θ, po(U), qo(V ))) = 0 if and only if θ = θo, (2.1)

where po ∈ P and qo ∈ Q are unknown (but identified) nuisance functions, and U ∈ Rdp and

V ∈ Rdq are random subvectors of Z that might have common elements. Moreover, we assume

that

Ψ(θ, po, q) = Ψ(θ, p, qo) = 0 if and only if θ = θo (2.2)

for all functions q ∈ Q and p ∈ P. Following Robins et al. (2000), we refer to any moment

condition that is of the form in (2.1) and satisfies the restriction (2.2) as a doubly robust (DR)

moment condition. We give a number of examples of settings in which DR moment conditions

exist in the following subsection. Note that restricting attention to “just-identified” cases with

ψ(·) taking values in Rdθ is without loss of generality, as Robins and Rotnitzky (2001) show that

for all DR moment conditions the number of moments is equal to the number of components of

θo.

Equation (2.2) implies that knowledge of either po or qo suffices for identifying θo. In

principle, one could therefore construct semiparametric estimators of θo that only require an

estimate of either po or qo, but not both. For example, θo could be estimated by the value that

sets a sample analogue of either Ψ(θ, po, q̃) or Ψ(θ, p̃, qo) equal to zero, where p̃ ∈ P and q̃ ∈ Q

are arbitrary known and fixed functions. The properties of such standard semiparametric two-

step estimators could be analyzed using general results in e.g. Newey (1994), Andrews (1994),

Ai and Chen (2003) or Chen et al. (2003). In this paper, we argue in favor of an estimator of

θo that solves a direct sample analogue of (2.1), using estimates of both infinite-dimensional
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nuisance parameters. We refer to such estimators as semiparametric doubly robust estimators

(SDREs), and show that they possess certain favorable theoretical properties that should offset

the additional computational costs due to estimating two functions nonparametrically instead

of just one.

2.2. Examples. Before discussing the specific form and implementation of the estimator,

we give a number of examples of DR moment conditions for various parameters of interest in

missing data and causal inference models. This should illustrate the broad applicability of the

methodology. We remark that in all the examples that we give below the moment function

ψ, on which the DR moment condition is based, is the semiparametrically efficient influence

function for the respective parameter of interest. As we show in Section 3, this implies that

the asymptotic variance of SDREs is equal to the respective semiparametric efficiency bound in

these settings (under suitable regularity conditions).

Example 1 (Population Means with Missing Data). Let X be a vector of covariates that is

always observed, and Y a scalar outcome variable that is observed if D = 1, and unobserved

if D = 0. The data consists of a sample from the distribution of Z = (DY,X,D), and the

parameter of interest is θo = E(Y ). Define the functions πo(x) = E(D|X = x) and µo(x) =

E(Y |D = 1, X = x), and assume that E(D|Y,X) = πo(X) > 0 with probability 1. Then

Ψ(θ, π, µ) = E(ψ(Z, θ, π(X), µ(X))) with

ψ(z, θ, π(x), µ(x)) =
d(y − µ(x))

π(x)
+ µ(x)− θ

is a DR moment condition for estimating θo.

Example 2 (Linear Regression with Missing Covariates). Let X = (X ′1, X
′
2)
′ be a vector of

covariates and Y a scalar outcome variable. Suppose that the covariates in X1 are only observed

if D = 1 and unobserved if D = 0, whereas (Y,X2) are always observed. The data thus consists

of a sample from the distribution of Z = (Y,X1D,X2, D). Here we consider the vector of

coefficients θo from a linear regression of Y on X as the parameter of interest. Define the

functions πo(y, x2) = E(D|Y = y,X2 = x2) and µo(x2, θ) = E(ϕ(Y,X, θ)|D = 1, X2 = x2)

with ϕ(Y,X, θ) = (1, X ′)′(Y − (1, X ′)θ), and assume that E(D|Y,X) = πo(Y,X2) > 0 with
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probability 1. Then Ψ(θ, π, µ) = E(ψ(Z, θ, π(X), µ(X))) with

ψ(z, θ, π(x), µ(x)) =
d(ϕ(y, x, θ)− µ(x, θ))

π(x)
+ µ(x, θ)

is a DR moment condition for estimating θo.

Example 3 (Average Treatment Effects). Let Y (1) and Y (0) denote the potential outcomes

with and without taking some treatment, respectively, with D = 1 indicating participation in

the treatment, and D = 0 indicating non-participation in the treatment. Then the realized

outcome is Y = Y (D). The data consist of a sample from the distribution of Z = (Y,D,X),

where X is some vector of covariates that are unaffected by the treatment, and the parameter of

interest is the Average Treatment Effect (ATE) θo = E(Y (1))− E(Y (0)). Define the functions

πo(x) = E(D|X = x) and µYo (d, x) = E(Y |D = d,X = x), put µo(x) = (µYo (1, x), µYo (0, x)),

and assume that 1 > E(D|Y (1), Y (0), X) = πo(X) > 0 with probability 1. Then Ψ(θ, π, µ) =

E(ψ(Z, θ, π(X), µ(X))) with

ψ(z, θ, π(x), µ(x)) =
d(y − µY (1, x))

π(x)
− (1− d)(y − µY (0, x))

1− π(x)
+ (µY (1, x)− µY (0, x))− θ

is a DR moment condition for estimating θo.

Example 4 (Average Treatment Effect on the Treated). Consider the potential outcomes

setting introduced in the previous example, but now suppose that the parameter of inter-

est is θo = E(Y (1)|D = 1) − E(Y (0)|D = 1), the Average Treatment Effect on the Treated

(ATT). Define the functions πo(x) = E(D|X = x) and µo(x) = E(Y |D = 0, X = x), put

Πo = E(D), Πo > 0, and assume that E(D|Y (1), Y (0), X) = πo(X) < 1 with probability 1.

Then Ψ(θ, π, µ) = E(ψ(Z, θ, π(X), µ(X))) with

ψ(z, θ, π(x), µ(x)) =
d(y − µ(x))

Πo
− π(x)

Πo
· (1− d)(y − µ(x))

1− π(x)
− θ

is a DR moment condition for estimating θo.

Example 5 (Local Average Treatment Effects). Let Y (1) and Y (0) denote the potential out-

comes with and without taking some treatment, respectively, with D = 1 indicating participa-

tion in the treatment, and D = 0 indicating non-participation in the treatment. Furthermore,
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let D(1) and D(0) denote the potential participation decision given some realization of a binary

instrumental variable W ∈ {0, 1}. That is, the realized participation decision is D = D(W )

and the realized outcome is Y = Y (D) = Y (D(W )). The data consist of a sample from the

distribution of Z = (Y,D,W,X), where X is some vector of covariates that are unaffected

by the treatment and the instrument. Define the function πo(x) = E(W |X = x), and sup-

pose that 1 > E(W |Y (1), Y (0), D(1), D(0), X) = E(W |X) > 0 and P (D(1) ≥ D(0)|X) = 1

with probability 1. Under these conditions, it is possible to identify the Local Average Treat-

ment Effect (LATE) θo = E(Y (1) − Y (0)|D(1) > D(0)), which serves as the parameter of

interest in this example. Also define the functions µDo (w, x) = E(D|W = w,X = x) and

µYo (w, x) = E(Y |W = w,X = x), and put µo(x) = (µDo (1, x), µDo (0, x), µYo (1, x), µYo (0, x)).

Then Ψ(θ, π, µ) = E(ψ(Z, θ, π(X), µ(X))) with

ψ(z, θ, π(x), µ(x)) = ψA(z, π(x), µ(x))− θ · ψB(z, π(x), µ(x)),

where

ψA(z, π(x), µ(x)) =
w(y − µY (1, x))

π(x)
− (1− w)(y − µY (0, x))

1− π(x)
+ µY (1, x)− µY (0, x),

ψB(z, π(x), µ(x)) =
w(d− µD(1, x))

π(x)
− (1− w)(d− µD(0, x))

1− π(x)
+ µD(1, x)− µD(0, x),

is a DR moment condition for estimating θo.

2.3. Semiparametric Estimation. In this paper, we consider an estimator θ̂ of θo that

solves a direct sample analogue of (2.1). That is, we take θ̂ as the value that solves the equation

0 = Ψn(θ, p̂, q̂) :=
1

n

n∑
i=1

ψ(Zi, θ, p̂(Ui), q̂(Vi)), (2.3)

in θ, where p̂ and q̂ are suitable nonparametric estimates of po and qo, respectively. Since Ψn

takes values in Rdθ , such a solution exists with probability one. We also define the following

8



quantities, which will be important for estimating the asymptotic variance of the estimator θ̂:

Γ̂ =
1

n

n∑
i=1

∂ψ(Zi, θ̂, p̂(Ui), q̂(Vi))/∂θ

Ω̂ =
1

n

n∑
i=1

ψ(Zi, θ̂, p̂(Ui), q̂(Vi))ψ(Zi, θ̂, p̂(Ui), q̂(Vi))
T .

For simplicity, we focus on the important special case that both infinite-dimensional nuisance

parameters are conditional expectation functions. That is, we consider the case that po(x) =

E(Yp|Xp = x) and qo(x) = E(Yq|Xq = x), where (Yp, Yq, Xp, Xq) ∈ R×R×Rdp×Rdq is a random

subvector of Z that might have common elements, and bothXp andXq are assumed to be contin-

uously distributed. It would be straightforward to extend our results to other types of functions,

including derivatives of conditional expectation functions, density functions, and conditional ex-

pectation functions with multivariate outcome variables and/or discrete covariates. We propose

to estimate both functions by local polynomial regression of order lp and lq, respectively. This

class of kernel-based smoothers has been studied extensively by e.g. Fan (1993), Ruppert and

Wand (1994) or Fan and Gijbels (1996). It is well-known to have attractive bias properties

relative to the standard Nadaraya-Watson estimator with higher-order kernels. In applications

where the dimension of Xp and Xq is not too large (in a sense made precise below), we will

work with lp = lq = 1. Using the notation that λp(u) = [u1, u
2
1, . . . , u

lp
1 , . . . , udp , u

2
dp
, . . . , u

lp
dp

]T

and λq(v) = [v1, v
2
1, . . . , v

lq
1 , . . . , vdq , v

2
dq
, . . . , v

lq
dq

]T , the “leave-i-out” local polynomial estimators

of po(Ui) and qo(Vi) are given by

p̂(Ui) = âp(Ui) and q̂(Vi) = âq(Vi),

respectively, where

(âp(Ui), b̂p(Ui)) = argmin
a,b

∑
j 6=i

(
Yp,j − a− b′λp(Xp,j − Ui)

)2
Khp(Xp,j − Ui),

(âq(Vi), b̂q(Vi)) = argmin
a,b

∑
j 6=i

(
Yq,j − a− b′λp(Xq,j − Vi)

)2
Khq(Xq,j − Vi).

Here Khp(u) =
∏dp
j=1K(uj/hp)/hp is a dp-dimensional product kernel built from the univariate

kernel function K, and hp is a one-dimensional bandwidth that tends to zero as the sample size n
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tends to infinity, and Khq(v) and hq are defined similarly. Note that it would be straightforward

to employ more general estimators using a matrix of smoothing parameters that is of dimension

dp × dp or dq × dq, respectively, at the cost of a much more involved notation (Ruppert and

Wand, 1994). Also note that using “leave-i-out” versions of the nonparametric estimators is

only necessary for the results we derive below in applications where either U and Xp or V and

Xq share some common elements.

3. Asymptotic Theory

3.1. Informal Overview of Results. In this section, we derive a number of theoretical

properties of SDREs. Our main result, stated in Theorem 1 below, gives conditions under

which these estimators are consistent, regular and asymptotically linear (RAL), asymptotically

unbiased, and asymptotically normal. We also derive the form of the asymptotic variance and

propose a consistent estimate thereof. The main advantage of SDREs is that these types of

results can be shown under assumptions about the accuracy of the first-stage nonparametric es-

timators that are weak relative to those commonly invoked to obtain similar findings for generic

semiparametric two-step estimators. We therefore expect that for SDREs these asymptotic re-

sults provide more accurate guidance about the estimators’ finite-sample properties than they

do in general.

To understand the role of the DR property in obtaining these result, it is instructive to

consider an informal sketch of the asymptotic normality argument. First, it is generally easy to

show that the estimator θ̂ has the following representation that depends on p̂ and q̂:

√
n(θ̂ − θo) =

1√
n

n∑
i=1

Γ−1o ψ(Zi, θo, p̂(Ui), q̂(Vi)) + oP (1).

where Γo = ∂E(ψ(Z, θ, po(U), qo(V )))/∂θ|θ=θo . Next, we show that n−1
∑n

i=1(ψ(Zi, θo, p̂(Ui), q̂(Vi))−

ψ(Zi, θo, po(Ui), qo(Vi))) = oP (n−1/2) using the DR property. We start by considering a second-
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order Taylor expansion of this term in (p̂, q̂) around (po, qo), which yields that

1

n

n∑
i=1

ψ(Zi, θo, p̂(Ui), q̂(Vi))− ψ(Zi, θo, po(Ui), qo(Vi))

=
1

n

n∑
i=1

ψp(Zi)(p̂(Ui)− po(Ui)) +
1

n

n∑
i=1

ψq(Zi)(q̂(Vi)− qo(Vi))

+
1

n

n∑
i=1

ψpp(Zi)(p̂(Ui)− po(Ui))2 +
1

n

n∑
i=1

ψqq(Zi)(q̂(Vi)− qo(Vi))2

+
1

n

n∑
i=1

ψpq(Zi)(p̂(Ui)− po(Ui))(q̂(Ui)− qo(Ui))

+OP (‖p̂− po‖3∞) +OP (‖q̂ − qo‖3∞).

Here ψp(Zi) and ψpp(Zi) are the first and second derivative of ψ(Zi, po(Ui), qo(Vi)) with respect

to po(Ui), respectively, ψq(Zi) and ψqq(Zi) are defined analogously, and ψpq(Zi) is the mixed

partial derivative of ψ(Zi, po(Ui), qo(Vi)) with respect to po(Ui) and qo(Vi). Clearly, the two

“cubic” remainder terms are both of the order oP (n−1/2) if the estimation error of the two

nonparametric estimates is uniformly of the order o(n−1/6). However, if one would be using a

generic moment condition, the five “leading” terms in the above equation would generally not

be of the order oP (n−1/2) if the nonparametric component converges that slowly (this typically

requires the first stage estimation error be of the order oP (n−1/4), and the smoothing bias to

be of the order o(n−1/2)). At this point, we exploit that the DR property of Ψ implies that

∂k

∂t
Ψ(θo, po + tp̄, qo)|t=0 =

∂k

∂t
Ψ(θo, po, qo + tq̄)|t=0 = 0 (3.1)

for k = 1, 2 and all functions p̄ and q̄ such that po + tp̄ ∈ P and qo + tq̄ ∈ Q for all t ∈ R with |t|

sufficiently small. This property can be used as follows. The estimators p̂ and q̂ generally satisfy

a certain linear stochastic expansion (e.g. Kong, Linton, and Xia, 2010). When substituting

these expansions into the above quadratic expansion, we obtain a number of U-Statistics of

various orders, that can be shown to be degenerate because of (3.1). These terms thus vanish

at a considerably faster rate than they would without the DR property. They can be shown to

be of the order oP (n−1/2) as long as the product of the two smoothing bias terms from estimating

po and qo is of the order o(n−1/2), and the respective overall estimation errors are uniformly of
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the order oP (n−1/6). Taken together, these arguments show that

√
n(θ̂ − θo) =

1√
n

n∑
i=1

Γ−1o ψ(Zi, θo, po(Ui), qo(Vi)) + oP (1).

The estimator is thus regular and asymptotically linear (RAL), and its asymptotic normality

follows directly from the central limit theorem if the summands on the right-hand side of the

last equation have finite second moments.

3.2. Asymptotic Properties. We now formalize the argument given above. For our theo-

retical analysis of the large-sample properties of SDREs, we impose the following conditions.

Assumption 1. (i) the random vector U is continuously distributed with compact support IU

(ii) supu∈IU E(|Yp|c|Xp = u) < ∞ for some constant c > 2, (iii) the random vector Xp is

continuously distributed with support Ip ⊇ IU , (iv) the corresponding density function fp is

bounded with bounded first order derivatives, and satisfies infu∈IU fp(u) ≥ δ for some constant

δ > 0, (v) the function po is (lp + 1) times continuously differentiable.

Assumption 2. (i) the random vectors V is continuously distributed with compact support

IV , (ii) supv∈IV E(|Yq|c|Xq = v) < ∞ for some constant c > 2, (iii) the random vector Xq

is continuously distributed with support Iq ⊇ IV , (iv) the corresponding density function fq is

bounded with bounded first order derivatives, and satisfies infv∈IV fq(v) ≥ δ for some constant

δ > 0 (v) the function qo is (lq + 1) times continuously differentiable.

Assumption 3. The kernel function K is twice continuously differentiable, and satisfies the

following conditions:
∫
K(u)du = 1,

∫
uK(u)du = 0 and

∫
|u2K(u)|du < ∞, and K(u) = 0 for

u not contained in some compact set, say [−1, 1].

Assumption 4. The function ψ(z, θ, p(u), q(v)) is (i) continuously differentiable with respect to

θ, (ii) three times continuously differentiable with respect to (p(u), q(v)), with derivatives that

are uniformly bounded, and (iii) such that the matrix Ωo := E(ψo(Z)ψo(Z)′) is finite, where

ψo(Z) = ψ(Z, θo, po(U), qo(V ))

Assumption 5. The bandwidth sequences hp and hq satisfy the following conditions as n→∞:

(i) nh
2(lp+1)
p h

2(lq+1)
q → 0, (ii) nh

6(lp+1)
p → 0, (iii) nh

6(lq+1)
q → 0, (iv) n2h

3dp
p / log(n)3 →∞, and

(v) n2h
3dq
q / log(n)3 →∞.
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Assumption 1–2 are standard smoothness conditions in the context of nonparametric regres-

sion. The restrictions on the kernel function K in Assumption 3 could be weakened to allow for

kernels with unbounded support. Parts (i)-(ii) of Assumption 4 impose some weak smoothness

restrictions on the function ψ, which are needed to later justify a certain quadratic expansion.

At the cost of a more involved theoretical argument, these assumptions could be relaxed by im-

posing smoothness conditions on the population functional Ψ instead (see Chen et al., 2003, for

example). Parts (iii) of Assumption 4 ensures that the term n1/2Ψn(θo, po, qo) satisfies a central

limit theorem. Finally, Assumption 5 imposes restrictions on the rate at which the bandwidths

hp and hq tend to zero given the number of derivatives of the unknown regression functions

and the dimension of the covariates. As argued above, these conditions are rather weak. Parts

(i)–(iii) of Assumption 5 allow the smoothing bias from estimating either po or qo to be as large

as o(n−1/6) as long as the product of the two bias terms is of the order o(n−1/2), and parts

(iv)–(v) only require the respective stochastic parts to be of the order oP (n−1/6). In contrast,

to show that a generic semiparametric two-step estimator is RAL, it is generally required that

the bias from estimating each nonparametric component alone is of the order o(n−1/2), whereas

the respective stochastic parts are generally required to be of the order oP (n−1/4) (see Newey

and McFadden, 1994, for example).1 Our assumptions yield the following theorem.

Theorem 1. Under Assumption 1– 5, the following statements hold as n→∞.

(i) θ̂
p→ θo;

(ii)
√
n(θ̂− θo) = n−1/2

∑n
i=1 λo(Zi) + oP (1), where λo(z) = Γ−1o ψ(z, θo, po(u), qo(u)) and Γo =

∂E(ψ(Z, θ, po(U), qo(V )))/∂θ|θ=θo;

(iii)
√
n(θ̂ − θo)

d→ N(0,Γ−1o ΩoΓ
−1
o ); and

(iv) Γ̂−1Ω̂Γ̂−1
p→ Γ−1o ΩoΓ

−1
o .

Theorem 1 has a number of important implications. Taken together, parts (iii) and (iv) can

e.g. be used to construct asymptotically valid confidence regions for θo or some of its components,

or to conduct various large-sample testing procedures. Theorem 1 also shows that SDREs are

adaptive semiparametric estimators, in the sense that they have the same first-order limiting

1Of course, such an estimator would often only use an estimate of either po or qo, but not both, and thus
require these rates to hold for estimates of one of the two functions only.
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distribution as an infeasible estimator that uses the true values of the infinite-dimensional

nuisance parameters instead of their nonparametric estimates. This is a property that SDREs

share with all semiparametric estimators defined through a moment condition based on an

influence function in the corresponding semiparametric problem (e.g. Newey, 1994). A further

implication of this fact is that it is easy to verify whether the asymptotic variance of an SDRE

achieves the corresponding semiparametric efficiency bound. This is the case if and only if the

corresponding moment condition is based on the respective efficient influence function. This is

the case for all settings that we listed in Section 2.2.

3.3. Advantages Relative to Generic Semiparametric Procedures. To illustrate in

which sense Theorem 1 improves upon well-known results for semiparametric two-step estima-

tors, it is useful to explicitly consider a “non-DR” estimator of θo that only uses a nonparametric

estimate of one of the two nuisance functions. As pointed out above, such an estimator always

exists in settings where there exists a DR moment condition. To be specific, we consider the

estimator θ̂∗ that solves

0 =
1

n

n∑
i=1

ψ∗(Zi, θ, p̂(Ui))

where ψ∗(z, θ, p(u)) = ψ(z, θ, p(u), q̄(v)) for some arbitrary function q̄ ∈ Q. Estimators like θ̂∗

have been studied extensively in the literature. Without loss of generality, one could choose q̄

such that θ̂∗ and θ̂ have the same influence function, but this is not important for the following

discussion, which focuses on conditions under which the estimator is RAL. We introduce the

following variations of Assumption 4–5.

Assumption 6. The function ψ∗(z, θ, p(u)) is (i) continuously differentiable with respect to

θ, (ii) three times continuously differentiable with respect to p(u), with derivatives that are

uniformly bounded, and (iii) such that the matrix Ω∗o := E(ψ̃∗o(Z)ψ̃∗o(Z)′) is finite, where

ψ̃∗o(Z) = ψ∗(Z, θo, po(U)) + α(Z) for α(z) = (yp − po(xp))ρ(xp)fU (xp)/fp(xp) and ρ(u) =

E(∂ψ∗(Z, θ, p)/∂p|p=po(U)|U = u).

Assumption 7. The bandwidth sequence hp satisfies the following conditions as n → ∞: (i)

nh
2(lp+1)
p → 0 and (ii) nh

2dq
p / log(n)2 →∞.
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Under these two conditions and Assumption 1 and 3, it follows from standard arguments

from the literature on semiparametric estimation with first-stage kernel estimators (e.g. Newey

and McFadden, 1994) that θ̂∗ is RAL. For completeness, we formally state this result as a

separate Theorem.2

Theorem 2. Under Assumption 1, 3 and 6–7, we have that

√
n(θ̂∗ − θo) =

1√
n

n∑
i=1

λ∗o(Zi) + oP (1),

where λ∗o(z) = Γ∗−1o (ψ∗(z, θo, po(u)) + α(z)) with Γ∗o = ∂E(ψ∗(Z, θ, po(U)))/∂θ|θ=θo and α(z) as

defined in Assumption 6, as n→∞.

Comparing the conditions of Theorem 1 and Theorem 2 illustrates the benefits of using

SDREs relative to generic semiparametric estimators. Strictly speaking, the conditions of The-

orem 2 are neither weaker nor stronger than those used to establish Theorem 1. Showing that

θ̂∗ is RAL requires smoothness conditions on one functional nuisance parameter, in this case

po, only, and also requires slightly weaker smoothness restrictions on the moment condition.

Showing that θ̂ is RAL requires smoothness conditions on both functional nuisance parameters,

and stronger smoothness restrictions on the moment condition. On the other hand, if one is

willing to impose such conditions, SDREs have a number of practically important advantages.

First, SDREs can generally make do with less stringent smoothness conditions on the func-

tional nuisance parameters, and thus with lower order local polynomials, than generic semi-

parametric estimators. For example, it is easily verified that if dp ≤ 5 and dq ≤ 5, there exist

bandwidths hp and hq such that Assumption 5 is satisfied even if lp = lq = 1. For a generic

estimator like θ̂∗, using local linear smoothing in the first stage is typically only permissible if

the unknown function is a one-dimensional nonparametric regression, since Assumption 7 can-

not hold with lp = 1 and dp > 1. This is an important aspect, as higher-order local polynomial

regression is well-known to have poor finite sample properties, especially when the covariates

are multi-dimensional. This phenomenon is analogous to that of poor finite-sample performance

of Nadaraya-Watson (or local constant) regression using higher-order kernels.

Second, in a semiparametric model where both SDREs and a generic semiparametric esti-

2We remark that the following Theorem can be shown under slightly weaker conditions if the term ψ∗(z, θ, p(u))
is linear in p(u).
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mator are RAL given suitable nonparametric first-step estimates, the former generally allow for

a much wider range of bandwidth values than the latter. To illustrate this point, consider the

simple case that dp = dq = lp = lq = 1, where Assumption 5 certainly holds for hp ∝ n−δp and

hq ∝ n−δq with 1/8 < δp < 2/3 and 1/8 < δq < 2/3. On the other hand, for θ̂∗ to be RAL

in this setting, one would require a bandwidth hp ∝ n−δp with 1/4 < δp < 1/2, as otherwise

Assumption 7 would be violated. Given the greater flexibility of the theory with respect to

bandwidth choice, we would expect the finite-sample distribution of SDREs to be more robust

to this issue than the finite-sample distribution of generic semiparametric estimators. This is

useful for applications, as it simplifies the task of finding a bandwidth such that the standard

large-sample inference procedures are approximately valid.

Third, in many instances the range of bandwidths that satisfy Assumption 5 includes the

values that minimize the Integrated Mean Squared Error (IMSE) for estimating po and qo,

respectively. This is not the case for Assumption 7. For example, in the simple case that

dp = dq = lp = lq = 1, choosing hp ∝ hq ∝ n−1/5 is sufficient to satisfy Assumption 5. We could

thus in principle choose an estimate of the bandwidths that minimize

∫
(po(u)− p̂(u))2du and

∫
(qo(v)− q̂(v))2dv, (3.2)

respectively, which are well known to be proportional to n−1/5 in this case. While strictly

speaking these bandwidth do not have any optimality properties for estimating θo, they have

the advantage that they can be estimated from the data via least-squares cross validation.

For many SDREs, there thus exist an objective and feasible data-driven bandwidth selection

method that does not rely on preliminary estimates of the nonparametric component. This is

important, since the lack of an objective method for bandwidth selection is one of the major

obstacles for applying semiparametric methods in practice.

Fourth, and finally, the difference between a SDRE and its RAL approximation is typically

of smaller order than the difference between a generic semiparametric estimator and its RAL

approximation. As a consequence, one can expect the Gaussian approximation resulting from

an RAL result to be more accurate for SDREs than for generic estimators. To see this, consider

first the generic estimator θ̂∗ for the simple case that dp = lp = 1, and that the other conditions

of Theorem 2 hold. Then one can show (e.g. Ichimura and Linton, 2005; Cattaneo et al., 2012a)
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that

θ̂∗ − θo −
1

n

n∑
i=1

λ∗o(Zi) = OP (h2p) +OP (n−1h−1p ). (3.3)

The first term on the right-hand side of this equation is related to the smoothing bias from

estimating the nonparametric component, whereas the second term is related to the variance

from the nonparametric estimation step. Cattaneo et al. (2012a) refer to the latter term as

a “nonlinearity bias”, as its occurrence is related to whether the final estimator depends non-

linearly on first-stage nonparametric estimator. Its magnitude is not affected by the use of

techniques that reduce smoothing bias, and would increase with the dimension of the covariate

vector in settings with dp > 1. The bandwidth that minimizes the magnitude of the two second

order terms on the right-hand side of the last equation satisfies hp ∝ n−1/3. With this choice of

bandwidth one finds that

θ̂∗ − θo −
1

n

n∑
i=1

λ∗o(Zi) = OP (n−2/3). (3.4)

Thus, while the second order terms vanish faster than n−1/2, they are still relatively large. On

the other hand, suppose that dp = dq = lp = lq = 1, that hp ∝ hq, and that the other conditions

of Theorem 1 hold. Then, by following the steps of the proof of Theorem 1, one finds that

θ̂ − θo −
1

n

n∑
i=1

λo(Zi) = OP (h4p) +OP (n−1h−1/2p ). (3.5)

We can see that the DR structure of the moment condition has reduced the impact of both the

smoothing bias and the nonlinearity bias, making the RAL approximation more accurate for

the SDRE than for the generic estimator. The bandwidth that minimizes the magnitude of the

two second order terms on the right-hand side of the last equation satisfies hp ∝ n−2/9. With

such a choice of bandwidth, we have that

θ̂ − θo −
1

n

n∑
i=1

λo(Zi) = OP (n−8/9),

and the second order terms thus vanish faster than the in the best-possible case we could achieve

for a generic estimator. As a consequence, we would thus e.g. expect confidence intervals based
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on a normality result to have better finite-sample coverage properties for SDREs than for generic

estimators.

4. Application to Estimation of Treatment Effects

In this section, we apply our theory to the problem of estimating the causal effect of a binary

treatment on some outcome variable of interest. See Imbens (2004) and Imbens and Wooldridge

(2009) for excellent surveys of the extensive literature on this topic.

4.1. Model and Parameters of Interest. Following Rubin (1974), we define treatment

effects in terms of potential outcomes. Let Y (1) and Y (0) denote the potential outcomes with

and without taking some treatment, respectively, with D = 1 indicating participation in the

treatment, and D = 0 indicating non-participation in the treatment. We observe the realized

outcome Y = Y (D), but never the pair (Y (1), Y (0)). The data consist of a sample from the

distribution of Z = (Y,D,X), where X is some vector of covariates that are unaffected by the

treatment. We write Πo = E(D), denote the propensity score by πo(x) = E(D|X = x), and

define the conditional expectation function µYo (d, x) = E(Y |D = d,X = x). We focus on the

Population Average Treatment Effect (ATE)

τo = E(Y (1)− Y (0))

and the Average Treatment Effect on the Treated (ATT)

γ0 = E(Y (1)− Y (0)|D = 1)

as our parameters of interest. Since we observe either Y (1) or Y (0), but never both, we have to

impose further restrictions on the mechanism that selects individuals into treatment to achieve

identification. Here we maintain the assumptions that the selection mechanism is “uncon-

founded” and satisfies a “strict overlap” condition. Unconfoundedness means that that con-

ditional on the observed covariates, the treatment indicator is independent of the potential

outcomes, i.e. (Y (1), Y (0))⊥D|X (Rosenbaum and Rubin, 1983). This condition is sometimes

also referred to as selection on observables (Heckman and Robb, 1985). Strict overlap means

that that the propensity score is bounded away from zero and one, i.e. P (π < πo(X) < π) = 1
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for π > 0 and π < 1. This condition is important to ensure that the semiparametric efficiency

bounds for estimating our parameters of interest are finite, and to ensure that there exists a RAL

semiparametric estimator (Khan and Tamer, 2010). Hahn (1998) derived the semiparametric

efficiency bounds for estimating the ATE and the ATT in this setting (under some additional

smoothness conditions on the model). That is, he showed that in the absence of knowledge of

the propensity score the asymptotic variance of any regular estimator of the ATE and ATT is

bounded from below by

Vate = E
(
σ2(1, X)

πo(X)
+

σ2(0, X)

1− πo(X)
+ (µYo (1, X)− µYo (0, X)− τ)2

)
and

Vatt = E
(
πo(X)

Π2
o

(
σ2(1, X) +

πo(X)σ2(0, X)

1− πo(X)
+ (µYo (1, X)− µYo (0, X)− γo)2

))
,

respectively, where σ2(d, x) = Var(Y |D = d,X = x). Semiparametric two-step estimators that

achieve these bounds have been studied by Heckman, Ichimura, and Todd (1997), Heckman,

Ichimura, Smith, and Todd (1998), Hahn (1998), Hirano et al. (2003) or Imbens, Newey, and

Ridder (2005), amongst others. Doubly robust estimators of treatment effect parameters that

impose additional parametric restrictions on nuisance functions have been studied by Robins

et al. (1994), Robins and Rotnitzky (1995), Rotnitzky, Robins, and Scharfstein (1998) and

Scharfstein et al. (1999), among many others, and are widely used in applied work. Cattaneo

(2010) was the first to propose a SDRE for ATE in a model with multiple treatment levels.

However, he did not formally prove that SDREs have favorable properties relative to generic

estimators.

4.2. Estimating the Average Treatment Effect for the Population. We now use the

methodology developed in Section 2–3 to study a SDRE of the ATE τo = E(Y (1) − Y (0)).

Straightforward calculations show that under unconfoundedness we can characterize τo through

the moment condition

E(ψate(Z, τo, πo(X), µo(X))) = 0,
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where µo(x) = (µYo (1, x), µYo (0, x)) and

ψate(z, τ, π(x), µ(x)) =
d(y − µY (1, x))

π(x)
− (1− d)(y − µY (0, x))

1− π(x)
+ (µY (1, x)− µY (0, x))− τ

is the efficient influence function for estimating τo (Hahn, 1998). It is also easily verified that

the above moment condition is doubly robust. Given nonparametric estimates of the propensity

score πo and the regression function µYo , we estimate the ATE by the value that sets a sample

version of this moment condition equal to zero. This leads to the estimator

τ̂DR =
1

n

n∑
i=1

(
Di(Yi − µ̂Y (1, Xi))

π̂(Xi)
− (1−Di)(Yi − µ̂Y (0, Xi))

1− π̂(Xi)
+ (µ̂Y (1, Xi)− µ̂Y (0, Xi))

)
.

Since we can anticipate the asymptotic variance of τ̂DR to be E(ψate(Z, τo, πo(X), µo(X))2) from

Theorem 1, we can also already define the corresponding estimator as follows:

V̂ (τ̂DR) =
1

n

n∑
i=1

ψate(Zi, τ̂DR, π̂o(Xi), µ̂o(Xi))
2.

We define π̂ as the lπ-th order “leave-i-out” local polynomial Probit estimator of πo(x) using the

bandwidth hπ, and µ̂Y (d, x) as the usual lµth order “leave-i-out” local polynomial estimator of

µYo (d, x) using a bandwidth hµ. That is, writing λπ(x) = [x1, x
2
1, . . . , x

lπ
1 , . . . , xdX , x

2
dX
, . . . , xlπdX ]T

and λµ(x) = [x1, x
2
1, . . . , x

lµ
1 , . . . , xdX , x

2
dX
, . . . , x

lµ
dX

]T , we define

π̂(Xi) = Φ(âπ(Xi)) and µ̂(d,Xi) = âµ(d,Xi),

respectively, where

(âπ(Xi), b̂π(Xi)) = argmin
a,b

∑
j 6=i

(
Dj − Φ(a− b′λπ(Xj −Xi))

)2
Khπ(Xj −Xi),

(âµ(d,Xi), b̂µ(d,Xi)) = argmin
a,b

∑
j 6=i

I{Dj = d}
(
Yj − a− b′λµ(Xj −Xi)

)2
Khµ(Xj −Xi),

and Φ(·) is the CDF of the standard normal distribution. Note that we slightly deviate from

the general theory presented in Section 2 by using a local polynomial Probit estimator for

the propensity score instead of a standard local polynomial smoother. This ensures that the
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estimator of πo is bounded between 0 and 1, and should improve the finite-sample properties

of the procedure. This choice has no impact on our asymptotic analysis, as it is well known

from the work of e.g. Fan, Heckman, and Wand (1995), Hall, Wolff, and Yao (1999) or Gozalo

and Linton (2000) that the asymptotic bias of the local polynomial Probit estimator is of the

same order of magnitude as that of the usual local polynomial estimator uniformly over the

covariates’ support, and that the two estimators have the same stochastic behaviour.

To study the asymptotic properties of the SDRE τ̂DR, we impose the following assump-

tions, which essentially restate the content of Assumption 1–2 using the notation of the present

treatment effects setting.

Assumption 8. (i) The random vector X is continuously distributed with compact support IX ,

(ii) the corresponding density function fX is bounded with bounded first-order derivatives, and

satisfies infx∈IX fX(x) ≥ δ for some constant δ > 0, and (iii) the function πo(x) is (lπ + 1)

times continuously differentiable.

Assumption 9. (i) For any d ∈ {0, 1}, the random vector X is continuously distributed con-

ditional on D = d with compact support IX , (ii) the corresponding density functions fX|d are

bounded with bounded first-order derivatives, and satisfy infx∈IX fX|d(x) ≥ δ for some constant

δ > 0 and any d ∈ {0, 1}, (iii) supx∈Ix,d∈{0,1} E(|Y |c|X = x,D = d) < ∞ for some constant

c > 2 and any d ∈ {0, 1} (iv) the function µo(d, x) is (lµ + 1) times continuously differentiable

with respect to its second argument for any d ∈ {0, 1}.

The following Theorem establishes the asymptotic properties of the SDRE τ̂DR.

Theorem 3. Suppose Assumption 8–9 hold, and that Assumption 3–5 hold with (lp, dp, hp) =

(lπ, dX , hπ) and (lq, dq, hq) = (lµ, dX , hµ). Then

i) τ̂DR
p→ τo,

ii)
√
n(τ̂DR − τo) = n−1/2

∑n
i=1 ψate(Zi, τo, πo(Xi), µo(Xi)) + oP (1),

iii)
√
n(τ̂DR − τo)

d→ N(0, V ∗ate).

iv) τ̂DR achieves the semiparametric efficiency bound for estimating τo.

v) V̂ (τ̂DR)
p→ Vate.
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Theorem 3 shows that the semiparametric DR estimator τ̂DR enjoys the same efficiency

property as e.g. the Inverse Probability Weighting estimator of Hirano et al. (2003), which is

based on the moment condition τo = E(DY/πo(X) + (1−D)Y/(1− πo(X))), or the Regression

estimator of Imbens et al. (2005), which is based on the moment condition τo = E(µYo (1, X)−

µYo (0, X)). However, following the discussion after Theorem 1, the SDRE has a number of

theoretical and practical advantages relative to kernel-based versions of these estimators.3 We

therefore recommend using the SDRE in practice.

Remark 1 (Selection of Tuning Parameters). Implementing the estimator τ̂DR requires choos-

ing two types of tuning parameters for the nonparametric estimation step: the bandwidths and

the order of the local polynomials. We recommend using lπ = lµ = 1 as long as dX ≤ 5, as

such a choice is compatible with the asymptotic theory and local linear regression estimators

are well-known to have superior small-sample properties relative to higher order local polyno-

mial smoothers. If dX < 4, our theory also allows choosing the bandwidths that minimize a

least-squares cross validation criterion, i.e. using

hπ = argmin
h

n∑
i=1

(Di − π̂(Xi))
2 and hµ = argmin

h

n∑
i=1

(Yi − µ̂Y (Di, Xi))
2.

As pointed out above, such a choice has no particular optimality properties for estimating τo,

but it has the advantage of being objective, data-driven, and easily implementable.

4.3. Estimating the Average Treatment Effect for the Treated. In this section, we

consider semiparametric DR estimation of the Average Treatment Effect for the Treated γ0 =

E(Y (1)− Y (0)|D = 1). Again, straightforward calculations show that under unconfoundedness

we can characterize γo through the moment condition

E(ψatt(Z, τate, πo(x), µYo (0, x),Πo) = 0,

3Both Hirano et al. (2003) and Imbens et al. (2005) consider series estimation in the first stage, and thus
their results are not directly comparable to ours. See Ichimura and Linton (2005) for an analysis of the Inverse
Probability Weighting estimator when the propensity score is estimated via local linear regression.
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where

ψatt(z, γ, π(x), µY (0, x),Π) =
d(y − µY (0, x))

Π
− π(x)

Π
· (1− d)(y − µY (0, x))

1− π(x)
− γ.

It is also easily verified that this moment condition is doubly robust. Given the same nonpara-

metric estimators of the propensity score πo and the regression function µYo we defined above,

and setting Π̂ =
∑n

i=1Di/N , the SDRE of the ATT is given by the value that sets a sample

version of this moment condition equal to zero, namely

γ̂DR =
1

n

n∑
i=1

(
Di(Yi − µ̂Y (0, Xi))

Π̂
− π̂(Xi)

Π̂
· (1−Di)(Yi − µ̂Y (0, Xi))

1− π̂(Xi)

)
.

Since from Theorem 1 we can anticipate the form of the asymptotic variance of γ̂DR, we can

also already define its estimator as follows:

V̂ (γ̂DR) =
1

n

n∑
i=1

ψatt(Zi, γ̂DR, π̂o(Xi), µ̂
Y
o (0, Xi), Π̂)2.

The following Theorem establishes the estimator’s asymptotic properties.

Theorem 4. Suppose Assumption 8–9 hold, and that Assumption 3–5 hold with (lp, dp, hp) =

(lπ, dX , hπ) and (lq, dq, hq) = (lµ, dX , hµ). Then

i) γ̂DR
p→ γo,

ii)
√
n(γ̂DR − γo) = n−1/2

∑n
i=1 ψatt(Zi, γo, πo(Xi), µ

Y
o (0, Xi),Πo) + oP (1),

iii)
√
n(γ̂DR − γo)

d→ N(0, Vatt)

iv) γ̂DR achieves the semiparametric efficiency bound γo in the absence of knowledge of the

propensity score.

v) V̂ (γ̂DR)
p→ Vatt.

The discussion after Theorem 3 applies analogously to the result in Theorem 4. The SDRE

of the ATT is not only semiparametrically efficient, but its properties also compare favorably to

those of other efficient estimators that use only a nonparametric estimate of either the propensity

score πo(·) (e.g. Hirano et al., 2003) or the regression function µYo (0, ·) (e.g. Imbens et al., 2005).
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5. Monte Carlo

In this section, we illustrate the properties of SDREs relative to other semiparametric two-step

estimators through a small scale Monte Carlo experiment. We consider the simple missing data

model present in Example 1 above: the covariate X is uniformly distributed on the interval

[0, 1], the outcome variable Y is normally distributed with mean µo(X) = (3X − 1)2 and

standard deviation .5, and the missingness indicator D is generated as a Bernoulli random

variable with mean πo(X) = .2 + .8(1−X2). Our parameter of interest is θo = E(Y ) = 1, and

the semiparametric variance bound for estimating this parameter is V ∗ ≈ 1.644. We study the

sample size n = 200, and set the number of replications to 1,000. We consider three estimators

of θo = E(Y ), namely the semiparametric doubly robust one based on a sample analogue of the

efficient influence function (DR), inverse probability weighting (IPW), and a regression-based

estimator (REG):

θ̂DR =
1

n

n∑
i=1

(
Di(Yi − µ̂(Xi))

π̂(Xi)
+ µ̂(Xi)

)

θ̂IPW =
1

n

n∑
i=1

DiYi
π̂(Xi)

θ̂REG =
1

n

n∑
i=1

µ̂(Xi).

We defined π̂ as the “leave-i-out” local linear Probit estimator of πo(x) using the bandwidth h ∈

{.05, .15, . . . , .45}, and µ̂(x) as the “leave-i-out” local linear estimator of µo(x) using a bandwidth

g ∈ {.02, .04, . . . , .1}.4 The construction of these nonparametric estimators is analogous to that

described in Section 4. We also consider nominal (1− α) confidence intervals of the usual form

CI1−αj =
[
θ̂j ± Φ−1(1− α/2)(V̂j/n)1/2

]
4We determined the range for the bandwidths as follows. In a preliminary simulation study, we generated

1,000 samples of size n = 200 from the distribution of (Y D,D,X), and estimated the bandwidths that minimize
a least squares cross-validation criterion for estimating πo and µo, respectively. The range for h and g we then
consider for our main simulation study corresponds roughly to that between the 5% and 95% empirical quantiles
of the distribution of the respective cross-validation bandwidths. We expect that the range of bandwidths we
consider covers most rules of thumb that practitioners might use in applications. We also experimented with
a wider range of bandwidths to ensure that our choice contains the values that approximately minimize the
respective MSE of the three estimators we consider in this simulation study.
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Figure 1: Simulation results: MSE, bias and variance of the IPW estimator for various values of h (solid
line), compared to results for the DR estimator with bandwidth g equal to .02 (dashed line), .04 (dotted
line), .06 (dot-dashed line), .08 (long dashed line), and .10 (long dashed dotted line).

Figure 2: Simulation results: MSE, bias and variance of the REG estimator for various values of g (solid
line), compared to results for the DR estimator with bandwidth h equal to .05 (dashed line), .15 (dotted
line), .25 (dot-dashed line), .35 (long dashed line), and .45 (long dashed dotted line).

with Φ−1(α) the α quantile of the standard normal distribution and

V̂j =
1

n

n∑
i=1

(
Di(Yi − µ̂(Xi))

π̂(Xi)
+ µ̂(Xi)− θ̂j

)2

an estimate of the asymptotic variance, for j ∈ {DR, IPW,REG}.

Our simulation results generally confirm the predictions of our asymptotic theory. In Fig-
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ure 1, we plot the Mean Squared Error (MSE), the bias, and the variance of the IPW estimator

as a function of the bandwidth h, and compare the results to those of the DR estimator for

various values of the bandwidth g. In Figure 2, we plot the same three quantities for the REG

estimator as a function of the bandwidth g, and compare the results to those for the DR esti-

mator for various values of the bandwidth h. We also present the same results in table form

in Table 1–3. One can clearly see that the bias of both IPW and REG varies substantially

with the respective bandwidth. To a lesser extend, this applies also to the variances of the two

estimators, especially in the case of IPW. As a consequence, the MSE shows strong dependence

on the bandwidth in both cases. It is minimized for h = .15 and g = .02, respectively, but these

values would be very difficult to determine in an empirical application. For the DR estimators,

we observe that those using one of the two smallest bandwidths, i.e. either h = .05 or g = .02,

exhibit somewhat different behavior from the remaining ones. For DR estimators using h > .05

and g > .02, the MSE, bias and variance all exhibit only minimal variation with respect to

the bandwidth. Their variance is substantially lower than that of IPW, and somewhat lower

than that of REG for larger values of g. It is also very close to the semiparametric efficiency

bound, which is equal to about 1.644 in our simulation design. The DR estimators are also

essentially unbiased for all bandwidth choices. DR estimators using either h = .05 or g = .02

have somewhat higher variance than those using larger bandwidths, but are also essentially

unbiased. As a consequence, they also compare favorably to both IPW and REG in terms of

MSE. In applications, we would recommend to implement DR estimators using bandwidths that

are relatively large.

We also computed the empirical coverage probabilities of the confidence intervals CI0.95j

for j ∈ {DR, IPW,REG}, using again various bandwidths for estimating the nonparametric

components. Results are reported in Table 4. Note that computing a confidence interval for

θo based on the IPW estimator requires an estimate of µo, and similarly a confidence interval

based on the REG estimator requires and estimate of πo. Therefore all confidence intervals vary

with respect to both bandwidth parameters. Our results show that the coverage probability

of DR-based confidence intervals is extremely close to its nominal value for all combinations

of bandwidths we consider. IPW-based confidence intervals exhibit slight under-coverage for

small and large values of h and good coverage properties for intermediate values, irrespective of
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Table 1: Simulation Results: MSE of the IPW, REG and DR estimator for various bandwidth values
(all results scaled by the sample size).

Bandwidth h .05 .15 .25 .35 .45

g Estimator DR REG

.02 1.839 1.737 1.733 1.731 1.730 1.725

.04 1.721 1.680 1.680 1.679 1.679 1.747

.06 DR 1.696 1.663 1.663 1.662 1.662 1.982

.08 1.683 1.656 1.657 1.656 1.656 2.497

.10 1.675 1.653 1.655 1.655 1.655 3.297

IPW 2.199 1.730 1.826 1.958 2.049

Table 2: Simulation Results: Bias of the IPW, REG and DR estimator for various bandwidth values (all
results scaled by the square root of the sample size).

Bandwidth h .05 .15 .25 .35 .45

g Estimator DR REG

.02 0.020 0.012 0.011 0.011 0.011 0.065

.04 0.018 0.015 0.014 0.014 0.014 0.264

.06 DR 0.012 0.011 0.011 0.011 0.011 0.558

.08 0.005 0.009 0.010 0.010 0.009 0.906

.10 0.003 0.006 0.008 0.008 0.007 1.269

IPW 0.509 0.013 0.170 0.177 0.122

Table 3: Simulation Results: Variance of the IPW, REG and DR estimator for various bandwidth values
(all results scaled by the sample size).

Bandwidth h .05 .15 .25 .35 .45

g Estimator DR REG

.02 1.838 1.737 1.732 1.731 1.730 1.721

.04 1.720 1.680 1.679 1.679 1.678 1.677

.06 DR 1.696 1.663 1.663 1.662 1.662 1.671

.08 1.683 1.656 1.656 1.656 1.656 1.677

.10 1.675 1.653 1.655 1.655 1.655 1.686

IPW 1.939 1.730 1.797 1.926 2.034

the choice of g. REG-based confidence intervals have good coverage properties for g = .02 and

g = .04, and substantial under-coverage for large values of g, irrespective of the choice of h.

6. Conclusions

Semiparametric two-step estimation based on a doubly robust moment condition is a highly

promising methodological approach in a wide range of empirically relevant models, including

many applications that involve missing data or the evaluation of treatment effects. Our results

suggest that SDREs have very favorable properties relative to other semiparametric estimators

that are currently widely used in such settings, such as e.g. Inverse Probability Weighting, and
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Table 4: Simulation Results: Empirical coverage probability of nominal 95% confidence intervals based
on either the DR, IPW or REG estimator, for various bandwidth values.

DR g / h .05 .15 .25 .35 .45
.02 0.949 0.946 0.945 0.945 0.945
.04 0.948 0.948 0.948 0.948 0.948
.06 0.948 0.949 0.949 0.948 0.948
.08 0.949 0.949 0.949 0.949 0.949
.10 0.951 0.949 0.950 0.950 0.950

IPW g / h .05 .15 .25 .35 .45
.02 0.928 0.940 0.936 0.926 0.924
.04 0.924 0.943 0.936 0.926 0.922
.06 0.923 0.942 0.937 0.926 0.923
.08 0.922 0.941 0.937 0.926 0.923
.10 0.921 0.941 0.937 0.926 0.923

REG g / h .05 .15 .25 .35 .45
.02 0.950 0.948 0.946 0.946 0.946
.04 0.946 0.942 0.941 0.941 0.941
.06 0.933 0.930 0.928 0.928 0.929
.08 0.895 0.891 0.890 0.890 0.890
.10 0.839 0.836 0.835 0.835 0.835

should thus be of particular interest to practitioners in these areas. From a more theoretical

point of view, we have shown that SDREs are generally root-n-consistent and asymptotically

normal under weaker conditions on the smoothness of the nuisance functions, or, equivalently,

on the accuracy of the first step nonparametric estimates, than those commonly used in the

literature on semiparametric estimation. As a consequence, the stochastic behavior of SDREs

can be better approximated by classical first-order asymptotics. We view these results as an

important contribution to a recent literature that aims at improving the accuracy of inference

in semiparametric models (e.g. Robins et al., 2008; Cattaneo et al., 2012a,b).

A. Proofs of Main Results

A.1. Proof of Theorem 1. Statement (i) is immediately implied by statement (ii), and could also be

derived under weaker conditions. Statement (iii) follows from (ii) and a simple application of a Central

Limit Theorem. Statement (iv) follows from standard arguments, and we thus omit an extensive proof

for brevity. It thus remains to show statement (ii). To prove that result, note that it follows from the

differentiability of ψ with respect to θ and the definition of θ̂ that

√
n(θ̂ − θo) = Γn(θ∗, p̂, q̂)−1

√
nΨn(θo, p̂, q̂)
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for some intermediate value θ∗ between θo and θ̂, and Γn(θ, p, q) = ∂Ψn(θ, po, qo)/∂θ. It also follows

from standard arguments that Γn(θ∗, p̂, q̂) = Γo + oP (1). Next, we consider an expansion of the term

Ψn(θo, p̂, q̂). Using the notation that

ψp(Zi) = ∂ψ(Zi, t, qo(Vi))/∂t|t=po(Ui),

ψpp(Zi) = ∂2ψ(Zi, t, qo(Vi))/∂t|t=po(Ui),

ψq(Zi) = ∂ψ(Zi, po(Ui), t)/∂t|t=qo(Vi),

ψqq(Zi) = ∂2ψ(Zi, po(Ui), t)/∂t|t=qo(Vi),

ψpq(Zi) = ∂2ψ(Zi, t1, t2)/∂t1∂t2|t1=po(Ui),t2=qo(Vi),

we find that by Assumption 4 we have that

Ψn(θo, p̂, q̂)−Ψn(θo, po, qo)

=
1

n

n∑
i=1

ψp(Zi)(p̂(Ui)− po(Ui)) +
1

n

n∑
i=1

ψq(Zi)(q̂(Vi)− qo(Vi))

+
1

n

n∑
i=1

ψpp
i (p̂(Ui)− po(Ui))

2 +
1

n

n∑
i=1

ψqq
i (q̂(Vi)− qo(Vi))

2

+
1

n

n∑
i=1

ψpq(Zi)(p̂(Ui)− po(Ui))(q̂(Ui)− qo(Ui))

+OP (‖p̂− po‖3∞) +OP (‖q̂ − qo‖3∞).

By Lemma 2(i) and Assumption 5, the two “cubic” remainder terms are both of the order oP (n−1/2). In

Lemma 4–6 below, we show that the remaining five terms on the right hand side of the previous equation

are also all of the order oP (n−1/2) under the conditions of the theorem. This completes our proof.

A.2. Proof of Theorem 2. Follows standard arguments from the literature on semiparametric

estimation with first-stage kernel estimators (e.g. Newey and McFadden, 1994).

A.3. Proof of Theorem 3 and 4. These two results can be shown using the same arguments as for

the proof of Theorem 1. .

B. Auxiliary Results

In this section, we collect a number of auxiliary results that are used to prove our main theorems.

The results in Sections B.1 and B.2 are minor variations of existing ones and are mainly stated for

completeness. The result in Section B.3 is simple to obtain and stated seperately again mainly for
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convenience. Section B.4 contains a number of important and original lemma that form the basis for our

proof of Theorem 1.

B.1. Rates of Convergence of U-Statistics. For a real-valued function ϕn(x1, . . . , xk) and an i.i.d.

sample {Xi}ni=1 of size n > k, the term

Un =
(n− k)!

n!

∑
s∈S(n,k)

ϕn(Xs1 , . . . , Xsk)

is called a kth order U-statistic with kernel function ϕn, where the summation is over the set S(n, k) of

all n!/(n − k)! permutations (s1, . . . , sk) of size k of the elements of the set {1, 2, . . . , n}. Without loss

of generality, the kernel function ϕn can be assumed to be symmetric in its k arguments. In this case,

the U-statistic has the equivalent representation

Un =

(
n

k

)−1 ∑
s∈C(n,k)

ϕn(Xs1 , . . . , Xsk),

where the summation is over the set C(n, k) of all
(
n
k

)
combinations (s1, . . . , sk) of k of the elements of

the set {1, 2, . . . , n} such that s1 < . . . < sk. For a symmetric kernel function ϕn and 1 ≤ c ≤ k, we also

define the quantities

ϕn,c(x1, . . . , xc) = E(ϕn(x1, . . . , xc, Xc+1, . . . , Xk) and

ρn,c = Var(ϕn,c(X1, . . . , Xc))
1/2.

If ρn,c = 0 for all c ≤ c∗, we say that the kernel function ϕn is c∗th order degenerate. With this notation,

we give the following result about the rate of convergence of a kth order U-statistic with a kernel function

that potentially depends on the sample size n.

Lemma 1. Suppose that Un is a kth order U-statistic with symmetric, possibly sample size dependent

kernel function ϕn, and that ρn,k <∞. Then

Un − E(Un) = OP

(
k∑

c=1

ρn,c
nc/2

)
.

In particular, if the kernel ϕn is c∗th order degenerate, then

Un = OP

(
k∑

c=c∗+1

ρn,c
nc/2

)
.

Proof. The result follows from explicitly calculating the variance of Un (see e.g. Van der Vaart, 1998),
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and an application of Chebyscheff’s inequality.

B.2. Stochastic Expansion of the Local Polynomial Estimator. In this section, we state a

particular stochastic expansion of the local polynomial regression estimators p̂ and q̂. This is a minor

variation of results given in e.g. Masry (1996) or Kong et al. (2010). For simplicity, we state the result

only for the former of the two estimators, but it applies analogously to the latter by replacing p with q

in the following at every occurrence. To state the expansion, we define the following quantities:

w(u) = (1, u1, ..., u
lp
1 , u2, ..., u

lp
2 , . . . , udp

, ..., u
lp
dp

)T

wj(u) = w((Xp,j − u)/hp)·

Mp,n(u) =
1

n

n∑
j 6=i

wj(u)wj(u)>Khp
(Xp,j − u),

Np,n(u) = E(wj(u)wj(u)>Khp
(Xp,j − u)),

ηp,n,j(u) = wj(u)wj(u)>Khp
(Xp,j − u)− E(wj(u)wj(u)>Khp

(Xp,j − u)).

To better understand this notation, note that for the simple case that lp = 0, i.e. when p̂ is the Nadaraya-

Watson estimator, we have that wj(u) = 1, that the term Mp,n(u) = n−1
∑n

i=1Khp(Xp,i − u) is the

usual Rosenblatt-Parzen density estimator, that Np,n(u) = E(Khp
(Xp,i−u)) is its expectation, and that

ηp,n,i(u) = Khp
(Xp,i − u)− E(Khp

(Xp,i − u)) is a mean zero stochastic term with variance of the order

O(h
−dp
p ). Also note that with this notation we can write the estimator p̂(Ui) as

p̂(Ui) =
1

n− 1

∑
j 6=i

e>1 Mp,n(Ui)
−1wj(Ui)Khp(Xp,j − Ui)Yp,j ,

where e1 denotes the (1 + lpdp)-vector whose first component is equal to one and whose remaining

components are equal to zero. We also introduce the following quantities:

Bp,n(Ui) = e>1 Np,n(Ui)
−1E(wj(Ui)Khp

(Xp,j − Ui)(po(Xp,j)− po(Ui))|Ui)

Sp,n(Ui) =
1

n

∑
j 6=i

e>1 Np,n(Ui)
−1wj(Ui)Khp

(Xp,j − Ui)εp,j

Rp,n(Ui) =
1

n

∑
j 6=i

e>1

 1

n

∑
l 6=i

ηp,n,l(Ui)

Np,n(Ui)
−2wj(Ui)Khp

(Xp,j − Ui)εp,j

We refer to these three terms as the bias, and the first- and second-order stochastic terms, respectively.

Here εp,j = Yp,j − po(Xp,j) is the nonparametric regression residual, which satisfies E(εp,j |Xp,j) = 0 by

construction. To get an intuition for the behaviour of the two stochastic terms, it is again instructive to
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consider simple case that lp = 0, for which

Sp,n(Ui) =
1

nf̄p,n(Ui)

∑
j 6=i

Khp
(Xp,j − Ui)εp,j and

Rp,n(Ui) =
1

nf̄p,n(Ui)2

 1

n

∑
l 6=i

(Khp
(Xp,l − Ui)− f̄p,n(Ui))

∑
j 6=i

Khp
(Xp,j − Ui)εp,j

with E(Khp(Xp,j − u)) = f̄p,n(u). With this notation, we obtain the following result.

Lemma 2. Under Assumptions 1–3, the following statements hold:

(i) For uneven lp ≥ 1 the bias Bp,n satisfies

max
i∈{1,...,n}

|Bp,n(Ui)| = OP (hlp+1
p ),

and the first- and second-order stochastic terms satisfy

max
i∈{1,...,n}

|Sp,n(Ui)| = OP ((nhdp
p / log n)−1/2) and max

i∈{1,...,n}
|Rp,n(Ui)| = OP ((nhdp

p / log n)−1).

(ii) For any lp ≥ 0, we have that

max
i∈{1,...,n}

|p̂(Ui)− po(Ui)−Bp,n(Ui)− Sp,n(Ui)−Rp,n(Ui)| = OP ((nhdp
p / log n)−3/2).

(iii) For ‖ · ‖ a matrix norm, we have that

max
i∈{1,...,n}

‖n−1
∑
j 6=i

ηp,n,j(Ui)‖ = OP ((nhdp
p / log n)−1/2).

Proof. The proof follows from well-known arguments in e.g. Masry (1996) or Kong et al. (2010).

B.3. Functional Derivatives of DR moment conditions. In this section, we formally prove a

result about the functional derivatives of DR moment conditions. Using the notation introduced in the

proof of Theorem 1, we obtain the following result.

Lemma 3. If the function ψ satisfies the Double Robustness Property in (2.2), and Assumption 4 holds,

then E(ψp(Z)p̄(U)) = E(ψpp(Z)p̄(U)) = E(ψq(Z)q̄(U)) = E(ψqq(Z)q̄(U)) = 0 for all functions p̄ and q̄

such that po + tp̄ ∈ P and qo + tq̄ ∈ Q for any t ∈ R with |t| sufficiently small.

Proof. The proof is similar for all four cases, and thus we only consider the first one. By dominated

32



convergence, we have that

E(ψp(Z)p̄(U)) = lim
t→0

Ψ(θo, po + tp̄, qo)−Ψ(θo, po, qo)

t
= 0

where the last equality follows since the numerator is equal to zero by the DR property.

B.4. Further Helpful Results. In this subsection, we derive a number of intermediate results used

in proof of Theorem 1.

Lemma 4. Under Assumption 1–5, the following statements hold:

(i)
1

n

n∑
i=1

ψp(Zi)(p̂(Ui)− po(Ui)) = oP (n−1/2),

(ii)
1

n

n∑
i=1

ψq(Zi)(q̂(Vi)− qo(Vi)) = oP (n−1/2).

Proof. We only show the first statement, as the proof for the second one is fully analogous. From

Lemma 2 and Assumption 5, it follows that

1

n

n∑
i=1

ψp(Zi)(p̂(Ui)− po(Ui)) =
1

n

n∑
i=1

ψp(Zi)(Bp,n(Ui) + Sp,n(Ui) +Rp,n(Ui))

+OP (log(n)3/2n−3/2h−3dp/2
p ),

and since the second term on the right-hand side of the previous equation is of the order oP (n−1/2) by

Assumption 5, it suffices to study the first term. As a first step, we find that

1

n

n∑
i=1

ψp(Zi)Bp,n(Ui) = E(ψp(Zi)Bp,n(Ui)) +OP (hlp+1
p n−1/2)

= OP (hlp+1
p n−1/2),

where the first equality follows from Chebyscheff’s inequality, and the second equality follows from

Lemma 2 and the fact that by Lemma 3 we have that E(ψp(Zi)Bp,n(Ui)) = 0. Next, consider the term

1

n

n∑
i=1

ψp(Zi)Sp,n(Ui) =
1

n2

∑
i

∑
j 6=i

ψp(Zi)e
>
1 Np,n(Ui)

−1wj(Ui)Khp(Xp,j − Ui)εp,i.

This is a second order U-Statistic (up to a bounded, multiplicative term), and since by Lemma 3 we

have that E(ψp(Zi)e
>
1 Np,n(Ui)

−1wj(Ui)Khp
(Xp,j − Ui)|Xp,j) = 0, its kernel is first-order degenerate. It
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then follows from Lemma 1 and some simple variance calculations that

1

n

n∑
i=1

ψp(Zi)Sp,n(Ui) = OP (n−1h−dp/2
p ).

Finally, we consider the term

1

n

n∑
i=1

ψp(Zi)Rp,n(Ui) = Tn,1 + Tn,2,

where

Tn,1 =
1

n3

∑
i

∑
j 6=i

ψp(Zi)e
>
1 ηp,n,j(Ui)Nn(u)−2wj(Ui)Khp

(Xp,j − Ui)εp,j and

Tn,2 =
1

n3

∑
i

∑
j 6=i

∑
l 6=i,j

ψp(Zi)e
>
1 ηp,n,j(Ui)Nn(Ui)

−2wl(Ui)Khp(Xp,l − Ui)εp,l.

Using Lemma 3, one can see that Tn,2 is equal to a third-order U-Statistic (up to a bounded, multiplicative

term) with second-order degenerate kernel, and thus

Tn,2 = OP (n−3/2h−dp
p )

by Lemma 1 and some simple variance calculations. On the other hand, the term Tn,1 is equal to n−1

times a second order U-statistic (up to a bounded, multiplicative term), with first-order degenerate

kernel, and thus

Tn,1 = n−1 ·OP (n−1h−3dp/2
p )) = n−1/2h−dp/2

p OP (Tn,2).

The statement of the lemma thus follows if hp → 0 and n2h
3dp
p → ∞ as n → ∞, which holds by

Assumption 5. This completes our proof.

Remark 2. Without the DR property, the term n−1
∑n

i=1 ψ
p(Zi)Bp,n(Ui) in the above proof would be

of the larger order OP (h
lp+1
p ), which is the usual order of the bias due to smoothing the nonparametric

component. This illustrates how the DR property of the moment conditions acts like a bias correction

device (see also Remark 2 below).
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Lemma 5. Under Assumption 1–5, the following statements hold:

(i)
1

n

n∑
i=1

ψpp(Zi)(p̂(Ui)− po(Ui))
2 = oP (n−1/2),

(ii)
1

n

n∑
i=1

ψqq(Zi)(q̂(Vi)− qo(Vi))
2 = oP (n−1/2).

Proof. We only show the first statement, as the second statement is conceptually similar to establish.

Note that by Lemma 2 we have that

(p̂(u)− po(u))2 =

6∑
k=1

Tn,k(u) +OP

( log(n)

nh
dp
p

)3/2
(OP (hlp+1

p ) +OP

(
log(n)

nhp

))
,

where Tn,1(u) = Bp,n(u)2, Tn,2(u) = Sp,n(u)2, Tn,3(u) = Rp,n(u)2, Tn,4(u) = 2Bp,n(u)Sp,n(u), Tn,5(u) =

2Bp,n(u)Rp,n(u), and Tn,6(u) = 2Sp,n(u)Rp,n(u). Since the second term on the right-hand side of the

previous equation is of the order oP (n−1/2) by Assumption 5, it suffices to show that we have that

n−1
∑n

i=1 ψ
pp(Zi)Tn,k(Ui) = oP (n−1/2) for k ∈ {1, . . . , 6}. Our proof proceeds by obtaining sharp

bounds on n−1
∑n

i=1 ψ
pp(Zi)Tn,k(Ui) for k ∈ {1, 2, 4, 5} using Lemmas 3 and 1, and crude bounds for

k ∈ {3, 6} simply using the uniform rates derived in Lemma 2. First, for k = 1 we find that

1

n

n∑
i=1

ψpp(Zi)Tn,1(Ui) = E(ψpp(Zi)Bp,n(Ui)
2) +OP (n−1/2h2lp+2

p ) = OP (n−1/2h2lp+2
p )

because E(ψpp(Zi)Bp,n(Ui)
2) = 0 by Lemma 3. Second, for k = 2 we can write

1

n

n∑
i=1

ψpp(Zi)Tn,2(Ui) = Tn,2,A + Tn,2,B

where

Tn,2,A =
1

n3

∑
i

∑
j 6=i

ψpp(Zi)(e
>
1 Np,n(Ui)

−1wj(Ui))
2Khp

(Xp,j − Ui)
2ε2p,j

Tn,2,B =
1

n3

∑
i

∑
j 6=i

∑
l 6=i,j

ψpp(Zi)e
>
1 Np,n(Ui)

−1wj(Ui)Khp(Xp,j − Ui)εp,j

· e>1 Np,n(Ui)
−1wl(Ui)Khp

(Xp,l − Ui)εp,l

Using Lemma 3, one can see that Tn,2,B is equal to a third-order U-Statistic with a second-order degen-

erate kernel function (up to a bounded, multiplicative term), and thus

Tn,2,B = OP (n−3/2h−dp
p ).
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On the other hand, the term Tn,2,A is (again, up to a bounded, multiplicative term) equal to n−1 times

a second order U-statistic with first-order degenerate kernel function, and thus

Tn,1,A = n−1OP (n−1h−3dp/2
p ) = OP (n−2h−3dp/2

p ).

Third, for k = 4 we use again Lemma 3 and Lemma 1 to show that

1

n

n∑
i=1

ψp(Zi)Tn,4(Ui) =
1

n2

n∑
i=1

∑
j 6=i

ψpp(Zi)Bp,n(Ui)e
>
1 Np,n(Ui)

−1wj(Ui)Khp
(Xp,j − Ui)εp,j

= OP (n−1h−dp/2
p ) ·O(hlp+1

p ),

where the last equality follows from the fact that n−1
∑n

i=1 ψ
p(Zi)Tn,4(Ui) is (again, up to a bounded,

multiplicative term) equal to a second order U-statistic with first-order degenerate kernel function.

Fourth, for k = 5, we can argue as in the final step of the proof of Lemma 4 to show that

1

n

n∑
i=1

ψpp(Zi)Tn,5(Ui) = OP (n−3/2h−dp
p hlp+1

p )

Finally, we obtain a number of crude bounds based on uniform rates in Lemma 2:

1

n

n∑
i=1

ψpp(Zi)Tn,3(Ui) = OP (‖Rp,n‖2∞) = OP (log(n)2n−2h−2dp
p )

1

n

n∑
i=1

ψpp(Zi)Tn,6(Ui) = OP (‖Rp,n‖∞) ·OP (‖Sp,n‖∞) = OP (log(n)3/2n−3/2h−3dp/2
p )

The statement of the lemma thus follows if hp → 0 and n2h
3dp
p / log(n)3 →∞ as n→∞, which holds by

Assumption 5. This completes our proof.

Remark 3. Without the DR property, the term Tn,2,B in the above proof would be (up to a bounded,

multiplicative term) equal to a third-order U-Statistic with a first-order degenerate kernel function (in-

stead of a second order one). In this case, we would find that

Tn,2,B = OP (n−1h−dp
p ) +OP (n−3/2h−dp

p ) = OP (n−1h−dp
p ).

The term of the order OP (n−1h
−dp
p ) is the “degrees of freedom bias” in Ichimura and Linton (2005), and

analogous to the “nonlinearity bias” or “curse of dimensionality bias” in Cattaneo et al. (2012a). In our

context, this term is removed by the DR property of the moment conditions, which illustrates how the

structure of the latter acts like a bias correction method.
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Lemma 6. Under Assumption 1–5, the following statement holds:

1

n

n∑
i=1

ψpq(Zi)(p̂(Ui)− po(Ui))(q̂(Ui)− qo(Ui)) = oP (n−1/2).

Proof. By Lemma 2, one can see that uniformly over (u, v) we have that

(p̂(u)− po(u))(q̂(v)− qo(v)) =

9∑
k=1

Tn,k(u, v) +OP

( log(n)

nh
dp
p

)3/2
(OP (hlq+1

q ) +OP

(
log(n)

nh
dq
q

))

+OP

( log(n)

nh
dq
q

)3/2
(OP (hlp+1

p ) +OP

(
log(n)

nh
dp
p

))

where Tn,1(u, v) = Bp,n(u)Bq,n(v), Tn,2(u, v) = Bp,n(u)Sq,n(v), Tn,3(u, v) = Bp,n(u)Rq,n(v), Tn,4(u, v) =

Sp,n(u)Bq,n(v), Tn,5(u, v) = Sp,n(u)Sq,n(v), Tn,6(u, v) = Sp,n(u)Rq,n(v), Tn,7(u, v) = Rp,n(u)Bq,n(v),

Tn,8(u, v) = Rp,n(u)Sq,n(v), and Tn,9(u, v) = Rp,n(u)Rq,n(v). Since the last two terms on the right-hand

side of the previous equation are easily of the order oP (n−1/2) by Assumption 5, it suffices to show that

for any for k ∈ {1, . . . , 9} we have that n−1
∑n

i=1 ψ
pp(Zi)Tn,k(Ui, Vi) = oP (n−1/2). As in the proof of

Lemma 5, we proceed by obtaining sharp bounds on n−1
∑n

i=1 ψ
pp(Zi)Tn,k(Ui) for k ∈ {1, . . . , 5, 7} using

Lemma 1– 3, and crude bounds for k ∈ {6, 8, 9} simply using the uniform rates derived in Lemma 2.

First, arguing as in the proof of Lemma 4 and 5 above, we find that

1

n

n∑
i=1

ψpp(Zi)Tn,1(Ui, Vi) = E(ψpq(Zi)Bp,n(Ui)Bq,n(Vi)) +OP (n−1/2hlp+1
p hlq+1

q ) = OP (hlp+1
p hlq+1

q ),

where the last equation follows from the fact that E(ψpq(Zi)Bp,n(Ui)Bq,n(Vi)) = O(h
lp+1
p h

lq+1
q ). Second,

for k = 2 we consider the term

1

n

∑
i

ψpq(Zi)Tn,2(Ui, Vi) =
1

n2

∑
i

∑
j 6=i

ψpq(Zi)Bp,n(Ui)e
>
1 Np,n(Vi)

−1wj(Vi)Khq (Xq,j − Vi)εq,j .

This term is (up to a bounded, multiplicative term) equal to a second-order U-Statistic with non-

degenerate kernel function. It thus follows from Lemma 1 and some variance calculations that

1

n

∑
i

ψpq(Zi)Tn,2(Ui, Vi) = OP (n−1/2hlp+1
p ) +OP (n−1h−dq/2

q hlp+1
p )

Using the same argument, we also find that

1

n

∑
i

ψpq(Zi)Tn,4(Ui, Vi) = OP (n−1/2hlq+1
q ) +OP (n−1h−dp/2

p hlq+1
q ).
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For k = 3, we can argue as in the final step of the proof of Lemma 4 to show that

1

n

n∑
i=1

ψpp(Zi)Tn,3(Ui, Vi) = OP (n−1h−dq/2
q hlp+1

p ) +OP (n−3/2h−dq
q hlp+1

p ),

and for the same reason we find that

1

n

n∑
i=1

ψpp(Zi)Tn,7(Ui, Vi) = OP (n−1h−dp/2
p hlq+1

q ) +OP (n−3/2h−dp
p hlq+1

q ).

Next, we consider the case k = 5. Here we can write

1

n

∑
i

ψpq(Zi)Tn,5(Ui, Vi) = Tn,5,A + Tn,5,B ,

where

Tn,5,A =
1

n3

∑
i

∑
j 6=i

ψpq(Zi)(e
>
1 Np,n(Ui)

−1wp,j(Ui)Khp
(Xp,j − Ui)εp,j)

· (e>1 Nq,hq (Vi)
−1wq,j(Vi)Khq (Xq,j − Vi)εq,j),

Tn,5,B =
1

n3

∑
i

∑
j 6=i

∑
l 6=i,j

ψpq(Zi)e
>
1 Np,n(Ui)

−1wj(Ui)Khp
(Xp,j − Ui)εp,j

· e>1 Nq,hq
(Vi)

−1wl(Vi)Khq
(Xq,l − Vi)εq,l.

One can easily see that Tn,5,B is equal to a third-order U-Statistic (up to a bounded, multiplicative term)

with first-order degenerate kernel, and thus

Tn,5,B = OP (n−1) +OP (n−3/2h−dp/2
p h−dq/2

q )

by Lemma 1 and some straightforward variance calculations. On the other hand, the term Tn,5,A is equal

to n−1 times a non-degenerate second order U-statistic (up to a bounded, multiplicative term), and thus

Tn,5,A = n−1 · (OP (1) +OP (n−1/2) +OP (n−1h−dp/2
p h−dq/2

q ) = OP (n−1) + n−1/2OP (Tn,5,B).

by Lemma 1 and the usual variance calculations. Finally, we obtain a number of crude bounds based on
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uniform rates in Lemma 2 for the following terms:

1

n

n∑
i=1

ψpp(Zi)Tn,6(Ui) = OP (‖Sp,n‖∞) ·OP (‖Rq,n‖∞) = OP (log(n)5/2n−5/2h−dp
p h−3dq/2

q )

1

n

n∑
i=1

ψpp(Zi)Tn,8(Ui) = OP (‖Rp,n‖∞) ·OP (‖Sq,n‖∞) = OP (log(n)5/2n−5/2h−dq
q h−3dp/2

p )

1

n

n∑
i=1

ψpp(Zi)Tn,9(Ui) = OP (‖Rp,n‖∞) ·OP (‖Rq,n‖∞) = OP (log(n)3n−3h−3dp/2
p h−3dq/2

q )

The statement of the Lemma then follows from Assumption 5. This completes our proof.
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